Jurnal Talenta Sipil

Vol 7, No 2 (2024): Agustus, 807-819

Publisher by Program Studi Teknik Sipil Fakultas Teknik Universitas Batanghari ISSN 2615-1634 (Online), DOI 10.33087/talentasipil.v7i2.600

Faktor Penyebab Contract Change Order pada Proyek Konstruksi Sumber Daya Air Padang Pariaman

Jonadi*, Zuherna Mizwar, Wahyudi P Utama

Pasca Sarjana Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Bung Hatta *Correspondence email: jonadist@gmail.com

Abstrak. Proyek infrastruktur pemerintah dalam proyek sumber daya air pada umumnya menerapkan sistem kontrak harga satuan. Hal ini disebabkan karena penerapan sistem kontrak harga satuan tidak sulit dan seimbang dalam hal pembagian resiko dari perubahan kontrak antara penyedia dan pengguna jasa kontruksi. Pada sistem kontrak harga satuan sangat memungkinkan terjadinya perubahan kontrak pada proyek konstruksi. Perubahan dalam pelaksanaan proyek konstruksi dapat terjadi berulang kali dan sulit untuk dihindari. Tujuan dari penelitian adalah untuk mengidentifikasi faktor-faktor penyebab *Contract Change Order* dan faktor dominan penyebabnya selama tahap pelaksanaan proyek konstruksi bidang sumber daya air. Penelitian dilakukan dengan menyebar kuisioner terhadap para responden yang terlibat dalam pekerjaan proyek konstruksi bidang sumber daya air pada Dinas PUPR Padang Pariaman untuk tahun anggaran 2019 hingga 2021 dan kemudian dilakukan análisis faktor. Dalam penelitian faktor — faktor yang menjadi penyebab *Contract Change Order* terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air Kabupaten Padang Pariaman yaitu terdapat 4 faktor yang menjadi penyebab *Contract Change Order* selama tahap pelaksanaan proyek konstruksi bidang sumber daya air yaitu faktor manajerial, faktor faktor peraturan dari pihak yang berwenang membuat keputusan, faktor planning, faktor perubahan desain. Faktor dominan yang menjadi penyebab *Contract Change Order* terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air yaitu faktor manajerial, faktor faktor peraturan dari pihak yang berwenang membuat keputusan, faktor planning, faktor perubahan desain. Faktor dominan yang menjadi penyebab *Contract Change Order* terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air yaitu faktor manajerial.

Kata Kunci: proyek konstruksi; contract change order; manajerial

Abstract. Government infrastructure projects in water resources projects generally apply a unit price contract system. This is because implementing a unit price contract system is not difficult and is balanced in terms of sharing risks from contract changes between providers and users of construction services. In the unit price contract system, it is very possible for contract changes to occur on construction projects. Changes in the implementation of construction projects can occur repeatedly and are difficult to avoid. The aim of the research is to identify the factors that cause Contract Change Orders and the dominant factors that cause them during the implementation phase of construction projects in the water resources sector. The research was carried out by distributing questionnaires to respondents involved in water resources construction project work at the Padang Pariaman PUPR Service for the 2019 to 2021 budget year and then carrying out factor analysis. In research on the factors that cause Contract Change Orders to occur during the implementation phase of water resources construction projects in Padang Pariaman Regency, there are 4 factors that cause Contract Change Orders during the implementation phase of water resources construction projects, namely managerial factors, regulatory factors. from parties who have the authority to make decisions, planning factors, design change factors. The dominant factor that causes the Contract Change Order to occur during the implementation stage of a water resources construction project is the managerial factor.

Keywords: construction projects; contract change orders; managerial

PENDAHULUAN

Proyek infrastruktur pemerintah, khususnya dalam proyek sumber daya air pada umumnya menerapkan sistem kontrak harga satuan. Hal ini disebabkan karena penerapan sistem kontrak harga satuan tidak sulit dan seimbang dalam hal pembagian resiko dari perubahan kontrak antara penyedia dan pengguna jasa kontruksi (Asnawi, M. N, 2017). Pada sistem kontrak harga satuan sangat memungkinkan terjadinya perubahan kontrak pada proyek konstruksi. Perubahan dalam pelaksanaan proyek konstruksi dapat terjadi berulang kali dan sulit untuk dihindari. Perubahan yang dapat terjadi pada proyek konstruksi yaitu perubahan waktu/durasi pelaksanaan, volume, desain, material, keterlambatan pembayaran dan nilai kontrak (Supriyanti, Khamim & Harsanti, 2019). Perubahan juga dapat terjadi oleh permintaan pihak yang terlibat pada proyek. Salah satu contoh yaitu *owner* sebagai pihak pertama meminta dalam perubahan desain. Konsultan dan kontraktor dapat juga melakukan perubahan jika terjadi perbedaan antara desain dan pekerjaan dilapangan atau terjadi kesalahan yang

tidak terprediksi.Perubahan pada proyek konstruksi dapat terjadi dari tahap pertama pekerjaan hingga akhir proyek konstruksi (Martanti, 2019). Perubahan tersebut dapat menghambat kelancaran pelaksanaan proyek konstruksi terhadap biaya (pembengkakan biaya) dan waktu (keterlambatan). Proyek konstruksi dapat dikatakan berhasil jika pelaksanaan sesuai spesifikasi, sesuai anggaran, selesai tepat waktu, dan untuk kepuasan pemilik(owner) (Hansen et al., 2020).

Perubahan pada proyek konstruksi atau dengan kata lain *contract change order* meliputi: menambah atau mengurangi jumlah item pekerjaan yang dituliskan dalam kontrak awal, mengubah penjadwalan kerja, dan spesifikasi teknis serta material kerja di lokasi. Perubahan pada item pekerjaan harus melampirkan aspek-aspek administrasi dan kontrak yang menyebutkan adanya *Contract Change Order (CCO)*. Perubahan item pekerjaan pada suatu proyek berdampak negatif bagi kontraktor dan *owner* baik secara langsung maupun tidak langsung. Banyaknya terjadi *change order* (perubahan pekerjaan) dan prosedur manajemen yang tidak tepat dalam proyek dapat menyebabkan perselisihan antara owner dan pelaksana pekerjaan (kontraktor) yang berakhir dengan proses persidangan. (M Aziz, dkk, 2016). Selain itu, dapat CCO dapat berdampak pada peningkatan biaya, finishing proyek terlambat, serta mutu yang berbeda dari *quality plan*. Ketepatan waktu dalam proyek konstruksi memiliki dampak yang signifikan terhadap pembiayaan di tempat dan realisasi fisik, sehingga kinerja waktu proyek yang maksimal diharapkan jika proyek dapat diselesaikan tepat waktu atau lebih cepat dari yang direncanakan (Waty & Sulistio, 2021).

Beberapa tahun terakhir, program Pemerintah di Kabupaten Padang Pariaman dalam pembangunan infrastruktur bidang sumber daya air mengalami peningkatan. Berdasarkan data bidang sumber daya air Dinas Pekerjaan Umum dan Penataan Ruang Kabupaten Padang Pariaman, terdapat banyak proyek yang mengalami *change order* setiap tahunnya. Sering terjadinya *Contract Change Order* pada proyek sumber daya air salah satunya disebabkan oleh berbedanya hasil survey awal perencanaan dengan kondisi lapangan pada pelaksanaan pekerjaan. Hal ini karena survey awal kurang detail serta proses tender berlangsung lama sehingga terjadi perubahan kondisi lapangan yang diakibatkan oleh peristiwa alam sehingga kondisi yang sudah tidak sesuai dengan gambar rencana awal (Rachman, 2018).

Contract change order merupakan permasalahan serius yang tidak diinginkan oleh semua pelaku jasa konstruksi, karena dihadapkan pada masalah etika dan perselisihan, bila tidak didasarkan dengan inovasi teknik yang baik dalam menghadapi permasalahan change order (Dharmayanti, 2021). Sehingga, penulis merasa perlunya dilakukan penelitian untuk menganalisis strategi yang tepat dalam menghadapi Contract Change Order pada pelaksanaan proyek konstruksi bidang sumber daya air di Kabupaten Padang Pariaman supaya tidak memberi dampak signifikan terhadap biaya, mutu dan waktu. Walaupun terdapat permasalahan Contract Change Order setiap tahunnya, tetapi Dinas PUPR mencatat penyelesaian pekerjaan konstruksi sumber daya air pada Kabupaten Padang Pariaman cenderung meningkat. Hanya saja, perubahan yang terjadi masih lebih dari 10% dari contract change order. Selain itu, Perpres no. 16 tahun 2018 menyatakan perubahan biaya kontrak dapat terjadi dengan batasan 10% dari nilai kontrak. Berdasarkan permasalahan diatas, penulis melakukan identifikasi faktor-faktor penyebab contract change order dan faktor dominan pada proyek konstruksi Bidang PSDA.

METODE

Penulis melakukan penelitian dengan metoda kuantitatif dengan menyebar kuisioner terhadap para responden. Responden dalam penelitian ini merupakan pihak *owner*, konsultan, dan kontraktor yang terlibat dalam pekerjaan proyek konstruksi bidang sumber daya air pada Dinas PUPR Padang Pariaman untuk tahun 2019 hingga 2021.

Populasi dan Sampel/ Responden

Menurut Sugiyono (2014) populasi merupakan semua objek penelitian seperti orang, benda atau peristiwa tertentu sedangkan sampel merupakan perwakilan dari populasi dalam penelitian. Menurut Bogdan & Tylor (2010) bahwa jumlah sampel yang digunakan pada penelitian harus mewakili populasi yang ditetapkan. Selain itu, peneliti harus mencermati kondisi berikut dalam menetapkan sampel sebagai responden penelitian, diantaranya adalah: responden yang digunakan harus memiliki keterkaitan dengan topik atau masalah yang diteliti, pro-aktif dalam masalah yang

diteliti, memiliki waktu dalam berbagi informasi kepada peneliti ketika dalampermintaan data, responden harus dapat berbagi informasi yang sesuai dengan kondisi nyata dilapangan.

Pada penelitian ini digunakan metode non-random sampling atau non-probability sampling dalam pengambilan sampel, yaitu teknik sampling yang berdasarkan sampel pilihan terhadap subjektivitas peneliti dan bukan acak (total sampling). Menurut Hery (2017) teknik total sampling (sampel jenuh) adalah teknik menentukan sampel bila seluruh anggota populasi digunakan menjadi sampel. Biasanya dilakukan jika populasi relatif kecil atau kurang dari 100. Dalam penelitian ini sampel adalah individu yang terlibat dan berpengalaman dalam proyek-proyek konstruksi bidang sumber daya air pada DPUPR Padang Pariaman dari tahun 2019 hingga 2021 yaitu Dinas PUPR bidang PSDA (owner), konsultan, dan kontraktor. (Tabel 1)

Tabel 1. Responden Penelitian

Responden	Jumlah Responden
Dinas PUPR Bidang PSDA	10
Kontraktor/ Pelaksana	40
Konsultan	40
Total Responden	90

Sumber: PSDA Dinas PUPR Padang Pariaman (2022)

Faktor-Faktor Penyebab Contract Change Order

Peneliti melakukan identifikasi faktor-faktor apa yang menyebabkan *Contract Change Order* selama tahap pelaksanaan proyek konstruksi bidang sumber daya air pada DPUPR Kabupaten Padang Pariaman. Pada tabel 2 didapatkan factor dan variabel berdasarkan studi literatur yang digunakan dalam peneltian sebagai berikut.

Tabel 2. Faktor dan Variabel Penyebab Change Order

Faktor		Variabel	Kode
Planing dan	a. 1	Kesalahan planing dan design	X1
Design	b.]	Perubahan desain	X2
	c.]	Perubahan metode kerja	X3
	d.	Kesalahan dan kelalaian dalam penentuan estimasi volume	X4
	e.	Ketidaksesuain antara gambar dan kontrak	X5
	f.	Ketidaksesuain antara gambar dan keadaan lapangan	X6
	g.]	Kutipan dari spesifikasi yang tidak lengkap	X7
	h. 1	Detail yang tidak jelas	X8
	i. 1	Kurangnya pengetahuan tentang karakter material	X9
	j.]	Penambahan change order pekerjaan	X10
	k. 1	Pengurangan <i>change orde</i> r pekerjaan	X11
		Value Engineering	X12
Kondisi Bawah	a.]	Penyelidikan lapangan yang tidak lengkap	X13
Tanah		Persyaratan tambahan dari perbaikan bawah tanah	X14
	c.]	Peningkatan penyelidikan bawah tanah	X15
	d.	Kondisi bawah tanah yang berbeda	X16
	e.]	Rembesan bawah tanah setelah penggalian	X17
Peristiwa Alam		Tanah longsor	X18
	b. 1	Banjir	X19
	c.]	Penurunan tanah	X20
	d. (Cuaca yang buruk	X21
Peraturan pihak	a.]	Pertimbangan politik	X22
berwenang yang	b. 1	Perubahan pembuat keputusan	X23
membuat		Penempatan awal fasilitas yang baru dibangun	X24
keputusan		Dominasi wewenang atasan	X25
•		Perubahan hukum /pemerintah	X26
		Perubahan komitmen dari pemerintahan	X27
Koordinasi		Koordinasi dengan sistem utilitas	X28
	b. (Campur tangan dari pemegang wewenang tertinggi	X29
		Persyaratan dari agency perencanaan tata kota	X30
		Konflik kontrak dan perselisihan	X31
		Jadwal yang terlalu padat	X32
		Kurangnya kontrol	X33
		Kurangnya team work	X34

Jonadi et al., Faktor Penyebab Contract Change Order Pada Proyek Konstruksi Sumber Daya Air Padang Pariaman

Tabel 2. Lanjutan

Faktor		Variabel	Kode
	h.	Kurangnya informasi tentang keadaan lapangan	X35
	i.	Kurangnya antisipasi terhadap keadaan mendadak	X36
	j.	Spesifikasi terkirim tidak sesuai	X37
	k.	Pengiriman material yang terlambat	X38
	l.	Buruknya alur informasi	X39
	m.	Interfensi dengan pihak ketiga	X40
	n.	Terlambat dalam menyetujui gambar, desain & klarifikasi	X41
	0.	Terlambat mengakses ke lapangan	X42
		Perubahan jadwal secara tiba-tiba	X43
	•	Jadwal sub kontraktor terlambat	X44

Sumber: Literature Review Peneliti (2023)

Setelah didapatkan faktor dan variabel, maka pengukuran kuesioner dapat dilakukan. Pengukuran kuesioner dilakukan dengan menggunakan Skala Likert, yaitu: 5 = Sangat Setuju (ST); 4 = Setuju (S); 3 = Cukup Setuju (CS); 2 = Kurang Setuju (KS); 1 = Tidak Setuju (TS). Selanjutnya peneliti melakukan pengujian KMO dan Bartlett, pengujian validitas dan pengujian reliabilitas untuk mendapatkan faktor-faktor penyebab *contract change order* pada proyek-proyek bidang sumber daya air DPUPR Padang Pariaman tahun 2019 hingga 2021.

Pengujian KMO dan Bartlett

Pengujian KMO dan Bartlett adalah pengujian asumsi guna melihat hubungan atau korelasi dari setiap faktor penelitian. Uji ini dilakukan dengan menggunakan uji korelasi antar variabel independen. Dalam ketentuan analisis faktor dan didukung oleh pendapat Sugiyono (2010) hasil uji korelasi harus lebih besar dari 0,5 dengan nilai signifikan kecil dari 0,05. Apabila nilai hasil pengujian KMO dan Bartlett untuk korelasi antar variable yang dilakukan besar dari 0,5 maka dapat dinyatakan variabel dan sampel yang digunakan dapat dilakukan analisis selanjutnya.

Pengujian Validitas

Menurut Azwar (1986) pengujian validitas adalah uji yang dilakukan guna menunjukkan sejauh mana alat ukur tersebut teliti dalam pengukuran, sah, atau valid tidaknya suatu kuesioner. Dalam mencari nilai validitas pada sebuah item dengan mengkorelasikan skor item dengan total item-item tersebut. Apabila terdapat item yang tidak sesuai syarat, maka item tersebut tidak akan diteliti lebih lanjut. Syarat tersebut menurut Sugiyono (2010) yang harus dipenuhi yaitu harus memiliki kriteria sebagai berikut:

- 1. apabila r hitung > r table maka variable dinyatakan valid.
- 2. apabila r hitung < r table maka variable dinyatakan tidak valid.

Pengujian Reliabilitas

Pengujian reliabilitas dilakukan guna melihat apakah alat ukur kuisioener dapat dipercaya. Suatu alat ukur dikatakan handal jika alat tersebut dapat digunakan berulang kali dan memberikan hasil yang relatif sama (tidak berbeda jauh). Menurut Hair et al (2010) Cronbach's Alpha merupakan suatu indikator handal yang dilihat dari nilai *correlated item-total correlation*. Correlated item-total correlation juga digunakan untuk menghapus indikator yang tidak handal dalam suatu variabel. Nilai correlated item-total correlation dalam suatu indikator dapat diterima bila nilai Cronbach's Alpha lebih besar atau sama dari koefisien Cronbach Alpha 0.60.

Faktor dominan penyebab Contract Change Order

Analisis faktor merupakan salah satu teknik analisis statistik multivariate yang bertujuan untuk mereduksi data. Proses analisis faktor digunakan untuk menemukan hubungan antara variabel yang saling independen yang kemudian dikelompokkan menjadi beberapa kelompok, sehingga terbentuk satu atau beberapa kumpulan variabel yang lebih sedikit dari jumlah variabel awal. (Johnson, 2008). Tahapan dalam analisa faktor guna mendapatkan faktor dominan dalam penelitian ini adalah sebagai berikut.

Pengujian Measure Of Sampling Adequacy (MSA)

Pengujian anti image matrice bertujuan untuk mengetahui besar korelasi parsial antara dua variabel. Pada bagian correlation dapat dilihat besarnya korelasi antar variable. Nilai MSA berkisar antara 0 hingga 1, dengan ketentuan sebagai berikut: (Santoso, 2006)

- MSA = 1, variabel dapat diprediksi tanpa kesalahan oleh variabel yang lain.
- MSA > 0,5, variabel masih bisa diprediksi dan bisa dianalisis lebih lanjut.
- MSA < 0,5, variabel tidak bisa diprediksi dan tidak bisa dianalisis lanjut, atau dikeluarkan dari variabel lainnya.

Analisis anti image correlation merupakan model yang digunakan untuk mengetahui layaknya atau tidaknya sebuah faktor untuk diproses dalam analisis faktor. Faktor yang diikutsertakan adalah faktor yang memiliki nilai koefisien korelasi besar atau sama dengan 0,50.

Pengujian Communalities

Pengujian communalities disebut sebagai peran faktor-faktor penyusun (dimensi) terhadap faktornya yang berguna untuk mengetahui varians-varians yang dapat dijelaskan oleh faktor yang diekstrak, Pengujian communalities ini dapat dikatakan memenuhi syarat apabila nilai ekstraktion besar dari 0,5.

Ekstraktion Faktor

Ekstraktion faktor merupakan cara untuk mereduksi data dari beberapa indikator guna mendapatkan faktor yang lebih sedikit dan dpat menerangkan korelasi antara indikator dalam kuisioner yang diukur (Sutopo, 2017). Table total variance explained menunjukan besarnya persentase keragaman total yang mampu diterangkan oleh keragaman faktor-faktor yang terbentuk.

Setelah sejumlah variabel terpilih, dilanjutkan dengan melakukan ekstraksi variabel menjadi beberapa kelompok faktor, dengan menggunakan metode PCA (*Principal Component Analysis*). Penentuan terbentuknya jumlah kelompok faktor dilakukan dengan melihat nilai eigen yang menyatakan kepentingan relative masing-masing faktor dalam menghitung varian dari variabel.

HASIL

Faktor-Faktor Penyebab Contract Change Order Pengujian KMO (Kaiser Mayer Oiken) and Bartlett's

Dalam menemukan sebab – sebab potensial sebagai pembentuk permasalahan utama maka dilakukan uji *KMO (Kaiser Mayer Oiken) and Bartlett's* yang berguna untuk menentukan kelayakan dari setiap variabel yang diuji.

Tabel 3. KMO and Bartlett's Test				
Kaiser-Meyer-Olkin Measure of Sampling Adequacy7'				
Bartlett's Test of Sphericity	Approx. Chi-Square	4742.054		
	df	496		
	Sig.	.000		

Sumber: Data Olahan (2023)

Pada tabel 3 dapat dilihat hasil pengujian dengan nilai *KMO and Barttletts Test of Specherity* adalah 0,772. Dimana nilai tersebut berada diatas 0,50 dengan nilai signifikan 0,000 yang dibawah nilai 0,05, sehingga sampel dinyatakan telah sesuai syarat dan analisa dapat dilanjutkan.

Pengujian Validitas Variabel

Pengujian ini dilakukan untuk melihat valid atau tidaknya suatu variabel. Suatu kuisioner dikatakan valid apabila pernyataan kuisionernya dapat mengungkapkan sesuatu yang diukur oleh kuisioner tersebut. Pada penelitian ini, pengujian validitas variabel dilakukan dengan melihat angka signifikasi, yaitu membandingkan nilai r hitung dengan r tabel untuk degree of freedom (Df) = n-2. Dimana berdasarkan jumlah total responden kuisioner adalah 90 responden dan didapatkan nilai r Tabel adalah 0,2072. Pada pengujian ini, variabel dikatakan valid jika nilai r Hitung lebih besar dari nilai r Tabel.

Jonadi et al., Faktor Penyebab Contract Change Order Pada Proyek Konstruksi Sumber Daya Air Padang Pariaman

Pada tabel 4 berdasarkan hasil uji validitas, sebanyak 40 variabel dinyatakan valid, 4 variabel dinyatakan tidak valid yaitu variable X3, X6, X13, X28 sehingga variable yang tidak valid tersebut tidak dapat digunakan untuk pengujian selanjutnya dan tersisa 40 variabel yang dapat dilakukan pengujian selanjutnya.

Tabel 4. Hasil Uji Validitas

	Tabel 4. Hasil Uji Validitas				
No	Variabel	NILAI r Hitung	Nilai r Tabel	Signifikansi	Keputusan
1	X1	0,527	0,2072	0,000	Valid
2	X2	0,245	0,2072	0,000	Valid
3	X3	0,011	0,2072	0,000	Tidak Valid
4	X4	0,419	0,2072	0,000	Valid
5	X5	0,723	0,2072	0,000	Valid
6	X6	0,053	0,2072	0,000	Tidak Valid
7	X7	0,360	0,2072	0,000	Valid
8	X8	0,683	0,2072	0,000	Valid
9	X9	0,596	0,2072	0,000	Valid
10	X10	0,333	0,2072	0,000	Valid
11	X11	0,702	0,2072	0,000	Valid
12	X12	0,568	0,2072	0,000	Valid
13	X13	0,180	0,2072	0,000	Tidak Valid
14	X14	0,586	0,2072	0,000	Valid
15	X15	0,866	0,2072	0,000	Valid
16	X16	0,790	0,2072	0,000	Valid
17	X17	0,528	0,2072	0,000	Valid
18	X18	0,673	0,2072	0,000	Valid
19	X19	0,886	0,2072	0,000	Valid
20	X20	0,868	0,2072	0,000	Valid
21	X21	0,819	0,2072	0,000	Valid
22	X22	0,847	0,2072	0,000	Valid
23	X23	0,850	0,2072	0,000	Valid
24	X24	0,823	0,2072	0,000	Valid
25	X25	0,910	0,2072	0,000	Valid
26	X26	0,875	0,2072	0,000	Valid
27	X27	0,900	0,2072	0,000	Valid
28	X28	0,018	0,2072	0,000	Tidak Valid
29	X29	0,787	0,2072	0,000	Valid
30	X30	0,551	0,2072	0,000	Valid
31	X31	0,073	0,2072	0,000	Valid
32	X32	0,284	0,2072	0,000	Valid
33	X33	0,843	0,2072	0,000	Valid
34	X34	0,875	0,2072	0,000	Valid
35	X35	0,888	0,2072	0,000	Valid
36	X36	0,877	0,2072	0,000	Valid
37	X37	0,860	0,2072	0,000	Valid
38	X38	0,310	0,2072	0,000	Valid
39	X39	0,593	0,2072	0,000	Valid
40	X40	0,606	0,2072	0,000	Valid
41	X41	0,824	0,2072	0,000	Valid
42	X42	0,877	0,2072	0,000	Valid
43	X43	0,426	0,2072	0,000	Valid
44	X44	0,819	0,2072	0,000	Valid
44	Λ44	0,019	0,2072	0,000	v anu

Sumber: Hasil olah data spss (2023)

Pengujian Reliabilitas

Pengujian reabilitas merupakan pengujian yang menerangkan sejauh mana pengukuran ini dapat memberikan hasil yang relatif tidak berbeda. Pengujian ini hanya dilakukan pada variable valid saja. Pengujian reliabilitas dilakukan dengan menggunakan persamaan Cronbach's Alpha. Suatu variabel dapat dikatakan handal jika Cronbach's Alpha lebih besar atau sama dengan nilai 0,60. (Ghozali, 2016). Adapun hasil penguji realibilitas dalam penelitian ini dapat dilihat dari tabel 5 berikut. Berdasarkan tabel 5 dapat dilihat bahwa nilai Cronbach's Alpha adalah sebesar 0,906 \geq 0,60 sehingga dapat dikatakan bahwa penelitian sangat handal (reliable).

Tabel 5. Hasil Uji Reliabilitas

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Ite	ms N of Items
.906	.895	40

Sumber: Hasil olah data (2023)

Measure of Sampling Aduquaecy (MSA)

Pada tabel 6 merupakan hasil analisis faktor yang dilakukan dan diperoleh nilai *Measure of Sampling Adequaecy* (MSA). Berdasarkan tabel tersebut, dapat dilihat dari 40 variabel terdapat 35 variabel menghasilkan nilai MSA diatas 0,50 dan terdapat 5 variabel dibawah 0,50 yaitu X2, X8, X15, X18, X31. Untuk dilakukan pengujian selanjutnya maka 5 variable yang tidak layak tersebut dikeluarkan dan dilakukan pengujian MSA yang kedua.

Tabel 6. Nilai MSA

	Tabel 6. Nilai MSA				
Variabel	Nilai Msa	Keterangan			
X1	0,874	Variabel layak digunakan			
X2	0,209	Variabel tidak layak digunakan			
X4	0,524	Variabel layak digunakan			
X5	0,750	Variabel layak digunakan			
X7	0,503	Variabel layak digunakan			
X8	0,463	Variabel tidak layak digunakan			
X9	0,903	Variabel layak digunakan			
X10	0,587	Variabel layak digunakan			
X11	0,694	Variabel layak digunakan			
X12	0,544	Variabel layak digunakan			
X14	0,738	Variabel layak digunakan			
X15	0,461	Variabel tidak layak digunakan			
X16	0,633	Variabel layak digunakan			
X17	0,513	Variabel layak digunakan			
X18	0,400	Variabel tidak layak digunakan			
X19	0,600	Variabel layak digunakan			
X20	0,688	Variabel layak digunakan			
X21	0,683	Variabel layak digunakan			
X22	0,705	Variabel layak digunakan			
X23	0,764	Variabel layak digunakan			
X24	0,914	Variabel layak digunakan			
X25	0,733	Variabel layak digunakan			
X26	0,669	Variabel layak digunakan			
X27	0,758	Variabel layak digunakan			
X29	0,785	Variabel layak digunakan			
X30	0,727	Variabel layak digunakan			
X31	0,193	Variabel tidak layak digunakan			
X32	0,572	Variabel layak digunakan			
X33	0,644	Variabel layak digunakan			
X34	0,688	Variabel layak digunakan			
X35	0,688	Variabel layak digunakan			
X36	0,886	Variabel layak digunakan			
X37	0,733	Variabel layak digunakan			
X38	0,532	Variabel layak digunakan			
X39	0,666	Variabel layak digunakan			
X40	0,770	Variabel layak digunakan			
X41	0,876	Variabel layak digunakan			
X42	0,749	Variabel layak digunakan			
X43	0,685	Variabel layak digunakan			
X44	0,835	Variabel layak digunakan			

Sumber: Hasil olah data spss (2023)

Pada hasil pengujian nilai MSA yang kedua didapatkan reduksi data kembali, dari 35 variabel pada hasil pengujian nilai MSA pertama terdapat 32 variabel menghasilkan nilai MSA diatas 0,50 dan terdapat 3 variabel dibawah 0,50 yaitu X7, X19, X38 dan ketiga variable yang tidak layak tersebut dikeluarkan. Sehingga dilakukan kembali pengujian nilai MSA yang ketiga dengan menggunakan 32 variabel tersebut. Pada pengujian nilai MSA yang ketiga kalinya dengan menggunakan 32 variabel,

Jonadi et al., Faktor Penyebab Contract Change Order Pada Proyek Konstruksi Sumber Daya Air Padang Pariaman

didapatkan semua variabel menghasilkan nilai MSA diatas 0,50 dan dapat dilanjutkan analisa berikutnya.

Pengujian Communalities

Tahapan analisis faktor dominan yang kedua adalah *Communalities*. *Communalities* adalah sebuah model yang digunakan untuk mengetahui faktor yang pertama kali terbentuk dalam menjelaskan variance dari sebuah variabel. Pengujian *communalities* untuk menetapkan apakah variabel-variabel tersebut dapat dikelompokkan ke dalam satu atau beberapa faktor. Pada uji *communalities* dimana 32 variabel yang didapatkan dari nilai *Measure of Sampling Adequaecy* (MSA) dapat disederhanakan ke dalam satu atau beberapa faktor. Jumlah faktor yang nantinya terbentuk dapat menjelaskan variable.

Pada tabel 7 terdapat 32 variable yang memiliki nilai koefisien korelasi besar dari 0,50. Hal ini menjelaskan bahwa semakin besar nilai *communalities* maka semakin erat hubungan variabel yang bersangkutan dengan faktor yang terbentuk. Metode ekstraksi yang digunakan adalah *Principal Component Analysis* (PCA).

Tabel 7. Hasil Uji Communalities

Tabel 7.	Tabel 7. Hasil Uji Communalities					
Variabel	Initial	Extraction				
X1	1.000	.866				
X4	1.000	.872				
X5	1.000	.951				
X9	1.000	.773				
X10	1.000	.944				
X11	1.000	.795				
X12	1.000	.898				
X14	1.000	.950				
X16	1.000	.861				
X17	1.000	.822				
X20	1.000	.912				
X21	1.000	.927				
X22	1.000	.934				
X23	1.000	.793				
X24	1.000	.898				
X25	1.000	.919				
X26	1.000	.860				
X27	1.000	.924				
X29	1.000	.875				
X30	1.000	.859				
X32	1.000	.884				
X33	1.000	.914				
X34	1.000	.869				
X35	1.000	.881				
X36	1.000	.875				
X37	1.000	.913				
X39	1.000	.785				
X40	1.000	.860				
X41	1.000	.949				
X42	1.000	.879				
X43	1.000	.796				
X44	1.000	.846				

Sumber: Hasil olah data (2023)

Nilai Variance (Total Variance Explained)

TotalVariance Explained adalah analisa yang digunakan untuk menunjukkan berapa jumlah faktor optimal dalam menerangkan variance dari 32 item variabel. Dalam analisa total variance explained, item variable diklasifikasikan berdasarkan kontribusi faktor total yang terbentuk. Semakin besar nilai kontribusi maka menunjukkan ketelitian atau ketepatan peneliti dalam memilih variabel yang diuji.

Tabel 8 merupakan hasil analisa *total variance explained* yang telah dilakukan dalam penelitian ini. Metode ekstraksi yang digunakan adalah *Principal Component Analysis* (PCA). Pada tabel menunjukkan bahwa variabel yang dianalisa dapat diklasifikasikan menjadi 7 faktor baru, yaitu yang

memiliki nilai total pada initial eigenvalues yang menunjukkan angka lebih besar dari satu. Penentuan variabel yang masuk masing—masing faktor dilakukan dengan membandingkan besaran korelasi pada setiap baris. Angka korelasi dibawah 0,5 menunjukkan indikasi korelasi yang lemah sedangkan diatas 0,5 berindikasi kuat.

Tabel 8. Total Variance Explained

				Extrac	tion Sums of	Squared	Rotation	Sums of Squ	ıared
		Initial Eigenve	alues		Loadings	-	Loading	s	
Comp		% of	Cumulative		% of	Cumulative		% of	Cumulative
onent	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	14.105	44.078	44.078	14.105	44.078	44.078	8.986	28.080	28.080
2	5.153	16.103	60.181	5.153	16.103	60.181	6.793	21.227	49.307
3	2.848	8.899	69.080	2.848	8.899	69.080	2.825	8.827	58.135
4	2.050	6.407	75.487	2.050	6.407	75.487	2.556	7.987	66.122
5	1.579	4.935	80.422	1.579	4.935	80.422	2.553	7.978	74.100
6	1.300	4.061	84.484	1.300	4.061	84.484	2.299	7.185	81.285
7	1.050	3.283	87.766	1.050	3.283	87.766	2.074	6.482	87.766
8	.693	2.166	89.933						
9	.571	1.784	91.717						
10	.421	1.314	93.031						
11	.381	1.189	94.220						
12	.325	1.014	95.235						
13	.278	.868	96.103						
14	.240	.750	96.853						
15	.193	.603	97.456						
16	.163	.508	97.964						
17	.113	.354	98.318						
18	.099	.311	98.629						
19	.074	.230	98.859						
20	.065	.205	99.064						
21	.061	.191	99.255						
22	.044	.137	99.392						
23	.042	.131	99.523						
24	.036	.113	99.636						
25	.029	.091	99.727						
26	.024	.075	99.802						
27	.021	.065	99.867						
28	.016	.050	99.917						
29	.011	.034	99.951						
30	.007	.021	99.972						
31	.006	.019	99.991						
32	.003	.009	100.000						

Sumber: Hasil olah data (2023)

Analisa Rotasi Matrik

Dalam analisa faktor identifikasi item yang mendukung keberadaan faktor sangat menentukan untuk melakukan penamaan sebuah faktor yang terbentuk, sehingga proses klasifikasi item pendukung pada sebuah faktor yang terbentuk harus dilakukan dengan teliti. Rotasi matrik menerangkan tahapan atau proses klasifikasi item yang mendukung keberadaan faktor baru. Pada tabel 9 dapat dilihat hasil pengujian rotasi matrik yang dilakukan terhadap 32 item varibel yang nantinya membentuk faktor-faktor yang menjadi penyebab *Contract Change Order* selama tahap pelaksanaan proyek konstruksi bidang sumber daya air DPUPR Kabupaten Padang Pariaman. Metode pada analisa rotasi adalah Varimax with Kaiser Normalization.

Tabel 9. Rotated Component Matrix

			Co	omponent			
-	1	2	3	4	5	6	7
X1	.321	.747	153	.018	.341	.098	.238
X4	.571	.018	302	.341	.504	.039	288
X5	.329	.482	.015	089	.261	.729	.052
X9	.805	.194	071	073	.211	.156	.090
X10	.055	240	383	474	041	698	149

Jonadi et al., Faktor Penyebab Contract Change Order Pada Proyek Konstruksi Sumber Daya Air Padang Pariaman

Tabel 9. Lanjutan

			Co	omponent			
	1	2	3	4	5	6	7
X11	.249	.608	.201	.144	.428	.293	.180
X12	111	.093	.833	078	.247	.264	214
X14	.761	.129	363	.195	.150	104	391
X16	209	115	.001	218	033	082	865
X17	.221	214	708	177	.210	162	352
X20	275	147	.314	813	040	069	224
X21	.050	499	300	753	025	105	082
X22	.095	.887	.102	.338	.052	087	063
X23	.147	.709	.248	.251	.114	.361	038
X24	.099	.581	210	.111	.495	.388	.315
X25	.382	.830	.034	.224	.046	.137	.112
X26	.234	.661	008	.141	.505	.298	064
X27	.093	.624	.178	.407	.471	.183	.271
X29	.574	.503	169	.379	.235	.141	.212
X30	.293	.354	.079	041	.798	.044	030
X32	.364	299	.718	123	047	358	017
X33	.818	.051	.089	.277	.221	.308	.121
X34	.829	.135	.141	.164	.252	.142	.184
X35	.806	.457	070	006	.132	005	.019
X36	.834	.324	127	023	.051	.129	.196
X37	.854	.217	156	.087	085	.303	.073
X39	.709	181	.379	.148	289	019	004
X40	.361	.578	.057	.254	050	.378	.426
X41	.755	.319	162	054	.041	171	.465
X42	.904	.209	.107	.002	.017	061	062
X43	.199	.815	209	209	.042	.040	.035
X44	.829	.117	.031	030	.301	220	.072

Sumber: Hasil olah data (2023)

Berdasarkan tabel 9 *rotated component matrix* maka dapat diambil nilai variabel besar dari 0,50. Dimana, variable tersebut dapat disebut mempengaruhi faktor atau dengan kata lain sebagai pembentuk faktor. Tabel *rotated component matrix* berfungsi untuk memperjelas variabel – variabel mana yang masuk ke dalam tiap faktor. Banyak sekali faktor loading yang mengalami rotasi menjadi lebih kecil atau lebih besar.

Pada tabel 10 dapat dilihat faktor-faktor baru yang terbentuk dan terdiri dari beberapa variable. Namun ada 3 faktor yang hanya memiliki 1 variabel, sehingga faktor tersebut bisa kita hilangkan dan dapat disimpulkan bahwa terdapat 4 faktor baru yang terbentuk setelah melakukan analisis faktor.

Tabel 10. Pengelompokkan Faktor Baru Berdasarkan Analisa Faktor

Faktor	Kode Variabel	Variabel
	X4	Kesalahan dan kelalaian dalam penentuan estimasi volume
	X9	Kurangnya pengetahuan tentang karakter material
	X14	Persyaratan tambahan dari perbaikan bawah tanah
	X29	Campur tangan dari pemegang wewenang tertinggi
	X33	Kurangnya kontrol
	X34	Kurangnya team work
Faktor 1 : Manajerial	X35	Kurangnya informasi tentang keadaan lapangan
	X36	Kurangnya antisipasi terhadap keadaan mendadak
	X37	Spesifikasi terkirim tidak sesuai
	X39	Buruknya alur informasi
	X41	Terlambat dalam menyetujui gambar, desain kontrak & klarifikasi
	X42	Terlambat mengakses ke lapangan
	X44	Jadwal sub kontraktor terlambat
	X1	Kesalahan planning dan desain
E-l-t 2 . Dt Dib-l-	X11	Pengurangan Change Order pekerjaan
Faktor 2 : Peraturan Pihak Yang Berwenang Membuat	X22	Pertimbangan politik
	X23	Perubahan pembuat keputusan
Keputusan	X24	Penempatan awal fasilitas yang baru dibangun
	X25	Dominasi wewenang atasan

Jonadi et al., Faktor Penyebab Contract Change Order Pada Proyek Konstruksi Sumber Daya Air Padang Pariaman

Tabel 10. Lanjutan

Faktor	Kode Variabel	Variabel
	X26	Perubahan hukum /pemerintah
	X27	Perubahan komitmen dari pemerintahan
	X40	Interfensi dengan pihak ketiga
	X43	Perubahan jadwal secara tiba-tiba
Faktor 3: Planning	X12	Value Engineering
	X32	Jadwal yang terlalu padat
Faktor	X21	Cuaca yang buruk
Faktor	X30	Persyaratan dari agency perencanaan tata kota
Faktor 4 : Perubahan Desain	X5	Ketidaksesuain antara gambar dan kontrak
	X10	Penambahan Change Order pekerjaan
Faktor	X16	Kondisi bawah tanah yang berbeda

Sumber: Hasil olah data (2023)

Faktor Dominan Penyebab Contract Change Order

Setelah dilakukan analisa faktor, dapat diperoleh faktor dominan yang menjadi penyebab Contract Change Order yang terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air DPUPR Kabupaten Padang Pariaman. Hal ini dapat dilihat pada tabel 11 dengan nilai % of variance Rotation Sum of Squred Loadings pada 4 faktor yang terbentuk. Faktor-faktor tersebut adalah faktor manajerial dengan nilai % of variance yang dihasilkan adalah sebesar 28.080%; faktor peraturan pihak yang berwenang dalam membuat keputusan dengan nilai % of variance 21.227%; faktor planning dengan nilai % of variance 8.827%; dan faktor perubahan desain dengan % of variance 7.987%. Dalam hal ini faktor dominan penyebab contract change order adalah faktor manajerial.

Tabel 11. Rotation Sum of Squred Loadings

Rotation Sums of Squared Loadings		
Component	% of Variance	
1	28,080	
2	21,227	
3	8,827	
4	7,987	

Sumber: Hasil olah data (2023)

Pembahasan

Faktor-faktor yang menjadi penyebab Contract Change Order terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air

Hasil penelitian yang dilakukan terdapat 4 faktor yang menjadi penyebab *contract change order* terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air pada Dinas PUPR Kabupaten Padang Pariaman yaitu faktor manajerial, faktor peraturan dari pihak berwenang yang membuat keputusan, faktor *planning*, faktor perubahan desain.

Berdasarkan pengolahan data yang telah dilakukan, faktor manajerial penyebab *contract change order* dalam penelitian ini terdiri dari: kesalahan dan kelalaian dalam penentuan estimasi volume, kurangnya pengetahuan tentang karakter material, persyaratan tambahan dari perbaikan bawah tanah (Gumolili, 2012), campur tangan dari pemegang wewenang tertinggi (Cynthia, 2022), kurangnya control, kurangnya team work, kurangnya informasi tentang keadaan lapangan, kurangnya antisipasi terhadap keadaan mendadak, spesifikasi terkirim tidak sesuai, buruknya alur informasi, terlambat dalam menyetujui gambar, desain kontrak & klarifikasi, terlambat mengakses ke lapangan, jadwal sub kontraktor terlambat.

Faktor berikutnya adalah faktor peraturan pihak yang berwenang dalam membuat keputusan, yang terdiri dari: kesalahan planning dan desain (Desai et. al, 2015 dan Syahbani dkk., 2023), pengurangan change order pekerjaan, pertimbangan politik, perubahan pembuat keputusan (Darmayanti, 2021), penempatan awal fasilitas yang baru dibangun, dominasi wewenang atasan, perubahan hukum /pemerintah, perubahan komitmen dari pemerintahan, interfensi dengan pihak ketiga, perubahan jadwal secara tiba-tiba.

Jonadi et al., Faktor Penyebab Contract Change Order Pada Proyek Konstruksi Sumber Daya Air Padang Pariaman

Faktor selanjutnya adalah faktor planning yang terdiri dari value engineering, jadwal yang terlalu padat dan terakhir adalah faktor perubahan desain yang terdiri dari ketidaksesuain antara gambar dan kontrak, penambahan *change order* pekerjaan.

Faktor dominan yang menjadi penyebab contract change order terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air

Faktor yang paling dominan yang menjadi penyebab *Contract Change Order* terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air adalah faktor manajerial dengan nilai % *of variance* yang dihasilkan adalah sebesar 28.080%. Pentingnya melakukan koordinasi dengan pihak terkait dilapangan seperti owner, konsultan, kontraktor, serta membuat estimasi volume pekerjaan sebelum pelaksanaan pekerjaan dan mempersiapkan desain sesuai waktu yang telah ditentukan atau sebelum pelaksanaan pekerjaan. Sama halnya kondisi CCO pada proyek konstruksi Kabupaten Bogor (Martanti, 2018), disebabkan oleh permintaan owner untuk optimalisasi fungsi bangunan, ketidaksesuaian gambar dan kondisi lapangan.

SIMPULAN

Dalam penelitian faktor – faktor yang menjadi penyebab *Contract Change Order* terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air Kabupaten Padang Pariaman yaitu terdapat 4 faktor yang menjadi penyebab *Contract Change Order* selama tahap pelaksanaan proyek konstruksi bidang sumber daya air yaitu faktor manajerial, faktor faktor peraturan dari pihak yang berwenang membuat keputusan, faktor planning, faktor perubahan desain. Faktor dominan yang menjadi penyebab *Contract Change Order* terjadi selama tahap pelaksanaan proyek konstruksi bidang sumber daya air yaitu faktor manajerial.

DAFTAR PUSTAKA

- Asnawi, M. N., 2017. Masalah-Masalah Hukum, [Online] Volume 46(1), pp. 55-68
- Azwar, S. 1986. Reliabilitas dan Validitas: Interpretasi dan Komputasi, Yogyakarta: Pustaka Pelajar.
- Bogdan, Robert, Taylor, Steven J. & DeVault, Marjorie L. (ed). 2016. *Introduction to Qualitative Research Methods: A Guidebook and Resouce*. Edisi keempat. New York: John Wiley & Sons. Hal 5
- Cynthia Apriani, Hardi Wijaya, Julita Andrini. 2022. Analisis Faktor Penyebab Dan Akibat Contract Change Order Pada Proyek Rehabilitasi Dan Renovasi Sarana Dan Prasarana Sekolah Kabupaten Pasaman Dan Kabupaten Pasaman Barat, Journal of Applied Engineering Scienties: Vol 5 No 3
- Desai, J.N., Pitroda, J. and Bhavsar, J. J. 2015. A Review on Change Order and Assessing causes Affecting Change Order In Construction. Journal of International Academic Research for 2 (12): 152-162.
- Dharmayanti, G., Janasuputra, I., & Wiryasa, N. 2021. Analisis Faktor Penyebab Contract Change Order Dan Pengaruhnya Terhadap Kinerja Pelaksanaan Proyek Konstruksi Di Lingkungan Pemerintah Kabupaten Badung. Jurnal Spektran, 9(2), 141-148.
- Ghozali, I. 2016. *Aplikasi Analisis Multivariate dengan Program IBM SPSS 23*, Edisi Kedelapan. Semarang: Badan Penerbit Universitas Diponegoro.
- Gumolili, S., Sompie, B., & Rantung, J. 2012. Analisa Faktor-Faktor Penyebab Change Order Dan Pengaruhnya Terhadap Kinerja Waktu Pelaksanaan Proyek Konstruksi Di Lingkungan Pemerintah Provinsi Sulawesi Utara. Jurnal Ilmiah Media Engineering, 2(4), 98522.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. 2011. *PLS-SEM: Indeed a silver bullet*. Journal of Marketing Theory and Practice, 19(2), 139–152.
- Hansen, S., Rostiyanti, S. F., & Rif'at, A. 2020. Causes, Effects, and Mitigations Framework of Contract Change Orders: Lessons Learned from GBK Aquatic Stadium Project. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 12(1), 05019008.
- Johnson, L. A. (2008). *Relationship of Institutional Methods to Students Engagement in Two Public High Schools*. American Secondary Education, Vol. 36, pp. 69-87.
- Khamim, M., & Harsanti, W. 2019. Analisis Penyebab Addendum Dan Pengaruhnya Terhadap Efektivitas Sasaran Proyek Pembangunan Gedung Di Kota Malang. PROKONS Jurusan Teknik Sipil, 12(1), 8.

- **Jonadi et al.,** Faktor Penyebab Contract Change Order Pada Proyek Konstruksi Sumber Daya Air Padang Pariaman
- Martanti, A. Y. Y. 2019. Analisis Faktor Penyebab Contract Change Order Dan Pengaruhnya Terhadap Kinerja Kontraktor Pada Proyek Konstruksi Pemerintah. Rekayasa Sipil, 7(1), 32.
- M Aziz A., Marthen Riyandi W., Dianita Ratna K., Nugroho Hartono. 2016. *Analisa Faktor Penyebab Keterlambatan*
- Progress Terkait Dengan Manajemen Waktu (Studi Kasus: Pelaksanaan Pembangunan Gedung UPT PP Politeknik Negeri Semarang). Wahana Teknik Sipil, 21 (2), 61-74
- Rachman, Tahar. 2018. *Kompetensi Pendamping Pembangunan Desa*. Angewandte Chemie International Edition, 6(11), 951–952.: 10–27.
- Santoso, Singgih. 2006. SPSS Statistik Multivariat. Jakarta: PT. Elex Media Komputindo.
- Sugiyono. 2010. Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif Dan R&D. Bandung: Alfabeta.
- Supriyanti, D. 2019. Faktor-Faktor Penyebab Pekerjaan Ulang pada Pelaksana Konstruksi Anggota Gapensi di Kota Malang untuk Proyek Konstruksi. Reka Buana: Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, 4(2), 120-128.
- Sutopo, Y. dan A. Slamet. 2017. Statistik inferensial. Andi: Yogyakarta.
- Syahbani, S., Wijaya, H. and Andraini, J. 2023. *Analisa Faktor Penyebab Contract Change (CCO)*Pada Proyek Pembangunan T/L 150 Kv Pasaman-Simpang Empat Section 2 Dan Gi Simpang Empat, Journal of Applied Engineering Scienties, 5(3), pp. 161-175.
- Waty, M., & Sulistio, H. 2021. *Identifikasi Risiko Change Order Proyek Konstruksi Jalan*. Jurnal Muara Sains, Teknologi, Kedokteran Dan Ilmu Kesehatan, 5(1), 225.